Simulation of Fractional Brownian Surfaces via Spectral Synthesis on Manifolds
نویسندگان
چکیده
منابع مشابه
On spectral simulation of fractional Brownian motion
This paper focuses on simulating fractional Brownian motion (fBm). Despite the availability of several exact simulation methods, attention has been paid to approximate simulation (i.e., the output is approximately fBm), particularly because of possible time savings. In this paper, we study the class of approximate methods that are based on the spectral properties of fBm’s stationary incremental...
متن کاملSimulation of fractional Brownian motion
Preface In recent years, there has been great interest in the simulation of long-range dependent processes, in particular fractional Brownian motion. Motivated by applications in communications engineering, I wrote my master's thesis on the subject in 2002. Since many people turned out to be interested in various aspects of fractional Brownian motion, I decided to update my thesis and make it p...
متن کاملSpectral correlations of fractional Brownian motion.
Fractional Brownian motion (fBm) is a ubiquitous nonstationary model for many physical processes with power-law time-averaged spectra. In this paper, we exploit the nonstationarity to derive the full spectral correlation structure of fBm. Starting from the time-varying correlation function, we derive two different time-frequency spectral correlation functions (the ambiguity function and the Kir...
متن کاملSpectral functions of subordinate Brownian motion on closed manifolds
For a class of subordinators we investigate the spectrum of the infinitesimal generator of subordinate Brownian motion on a closed manifold. We consider three spectral functions of the generator: the zeta function, the heat trace and the spectral action. Each spectral function explicitly yields both probabilistic and geometric information, the latter through the classical heat invariants. All c...
متن کاملBrownian and fractional Brownian stochastic currents via Malliavin calculus
By using Malliavin calculus and multiple Wiener-Itô integrals, we study the existence and the regularity of stochastic currents defined as Skorohod (divergence) integrals with respect to the Brownian motion and to the fractional Brownian motion. We consider also the multidimensional multiparameter case and we compare the regularity of the current as a distribution in negative Sobolev spaces wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2014
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2014.2348793